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Renormalized Stress Tensor in One-Bubble
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We compute the two-point function and the renormalized expectation value of
the stress tensor of a quantum field interacting with a nucleating bubble. Two
simple models are considered. One is the massless field in the Vilenkin-Ipser-
Sikivie spacetime describing the gravitational field of a reflection symmetric
domain wall. The other is vacuum decay in flat spacetime where the quantum
field only interacts with the tunneling field on the bubble wall. In both cases the
stress tensor is of the perfect fluid form. The asymptotic form of the equation
of state are given for each model. In the VIS case, we find that p 5 2 (1/3) r ,
where the energy density r is dominated by the gradients of supercurvature modes.

1. INTRODUCTION

The problem of the quantum state of a nucleating bubble has been

addressed in the literature several times [1±5]. The results relevant for our

discussion can be summarized as follows. We have a self-interacting scalar

field s (the tunneling field) described by the Lagrangian

+ s 5 2
1

2
- m s - m s 2 V( s ) (1)

where V( s ) has a local (metastable) minimum at some value s F and a global

one at s T (see Fig. 1). The bubble can be pictured as the evolution of the s
field in imaginary time. The corresponding solution of the Euclidean time

equation which interpolates between the false vacuum at spacetime infinity

and the true vacuum inside the bubble is called the bounce. In the absence

of gravity, vacuum decay is dominated by the O(4) symmetric bounce solution

[6 ]. So we shall write the tunneling field as a function of t [ (T 2
E 1 X )1/2

alone,
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Fig. 1. Assumed shape for the potential of the tunneling field. It has a local minimum which

corresponds to the false vacuum at s F and a global minimum, the true vacuum, at s T. The

bounce corresponds to the Euclidean evolution of the tunneling field under the barrier.

s 5 s 0( t ) (2)

where (TE , X ) are Cartesian coordinates in Euclidean space. The solution

describing the bubble after nucleation is given by the analytic continuation

of the bounce to Minkowski time T through the substitution TE 5 2 iT. Then

the bubble solution depends only on the Lorentz-invariant quantity (X 2 2
T 2)1/2, where (T, X ) the usual Minkowski coordinates.

If there are quantum fields interacting with the tunneling field, their

state will be significantly affected by the change of vacuum state. Pioneering

investigations of this matter were carried out by Rubakov [2 ] and Vachaspati

and Vilenkin [3 ]. The latter authors considered a model of two interacting

scalar fields s and F , and found the quantum state for F Ã (the quantum

counterpart of F ) by solving its functional ScroÈ dinger equation. In order to
find a solution, they impose as boundary conditions for the wave function

C ( t ; F ] regularity under the barrier and the tunneling boundary condition (see

ref. 3 for details). They find that the quantum state must be SO(3,1)-invariant.

A somewhat different approach was pursued later by Tanaka and Sasaki

[4 ]. They carried out a refinement of the method for constructing the WKB

wave function for multidimensional systems, first introduced by Banks et al.
[7 ] and extended to field theory by Vega et al. [8], and obtained the so called

quasi-ground-s tate wave function. The quasi-ground- state wave function is

a solution of the time-independent functional SchroÈ dinger equation to the

second order in the WKB approximation which is sufficiently localized at
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the false vacuum so that it would be the ground-state wave functional it there

were no tunneling. They also found that the state must be SO(3,1)-invariant.

Moreover, general arguments, due to Coleman [9 ], suggest that the decay
must be SO(3,1)-invariant. If not, the infinite-volume Lorentz group will

make the nucleation probability diverge. From a practical point of view,

therefore, it would be interesting to know to what extent symmetry considera-

tions alone can be used to construct sensible quantum states. As a first

approach to the problem, we will compute the two-point function and the

renormalized expectation value of the stress tensor in an SO(3,1)-invariant
quantum state for two simples models of one-bubble spacetimes.

2. GENERAL FORMALISM

Our aim is to study the quantum state of a field F described by a

Lagrangian of the general form

+ F 5 2
1

2
- m F - m F 2

1

2
m( s )2 F 2 (3)

where the mass term is due to the interaction of the field F with a nucleating

bubble. Working from the very beginning in the Heisenberg picture, we will
construct an SO(3,1)-invariant quantum state for the field F . Then we will

find its Hadamard two-point function G(1) (x, x8) [ ^ 0) { F Ã, (x) F Ã(x8)} ) 0& , and

we will check whether it is of the Hadamard form [10±13]. Loosely speaking,

a Hadamard state can be described2 as a state for which the singular part of

G(1)(x, x8) takes the form

G(1)
sing(x, x8) 5

u

s
1 vlog( s ) (4)

where s denotes half of the square of the geodesic distance between x and

x8, and u and v are smooth functions that can be expanded as a power series

in s , at least for x8 in a small neighborhood of x. Hadamard states are

considered physically acceptable because for them the point-splitting prescrip-

tion gives a satisfactory definition of the expectation value of the stress-
energy tensor. After clarifying the singular structure of G(1) (x, x8), we will

use the point-splitting formalism [14±17] to compute the renormalized expec-

tation value of the energy-momentum tensor in this quantum state. Finally

we will briefly discuss the applicability of a uniqueness theorem for quantum

states due to Kay and Wald [13].

2 For a more precise precise definition Hadamard states see ref. 13.
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3. SO(3,1) COORDINATES

In the present paper we will restrict ourselves to piecewise flat spacetime.

It proves very useful to use coordinates adapted to the symmetry of the

problem. So we will coordinatize flat Minkowski space using hyperbolic
slices, which will embody the symmetry under Lorentz transformations and

the lack of symmetry under PoincareÂtransformations. We define the new

coordinates (t, r) (Milne coordinates) by the equations

t [ (T 2 2 X 2)1/2, r [ tanh 2 1( ) X ) /T ) (5)

where (T, X ) are the usual Minkowski coordinates. In terms of these coordi-

nates, we have

ds2 5 2 dt2 1 t2 d V H3 (6)

where

d V H3 5 dr 2 1 sinh2r d V S2 (7)

is the metric on the unit three-dimensional spacelike hyperboloid and d V S2

is the line element on a unit sphere.
The above coordinates cover only the interior of the lightcone from the

origin. In order to cover the exterior, we will use the Rindler coordinates

j R [ (X 2 T 2)1/2, x R [ tanh
2 1 (T/ ) X ) ) (8)

In terms of these coordinates, the line element reads

ds2 5 d j 2
R 1 gAB dxA dxB 5 d j 2

R 1 j 2
R d V dS3 (9)

where gAB is the metric on the j R 5 const hypersurfaces, and dS3, is the line

element on a unit ª radiusº (2 1 1)-dimensional de Sitter space,

d V dS3 5 2 d x 2
R 1 cosh2 x R d V S2 (1 0)

The Milne and the Rindler coordinates are related by analytic

continuation,

x R 5 r 2 i p /2, j R 5 it (11)

Notice that t is timelike inside the lightcone and becomes spacelike after
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analytical continuation to the outside, whereas r is spacelike inside the

lightcone, but its analytical continuation is timelike.

4. QUANTUM STATE

As a first step, we will consider two simple models. First we consider

a massless field living in the Vilenkin±Ipser±Sikivie (VIS) spacetime [18 ]

[19]. The VIS spacetime represents the global gravitational field of a reflec-

tion-symmetric domain wall, and can be constructed by gluing two Minkowski

spaces at some j R 5 R 0, the locus corresponding to the evolution of the
bubble wall (see Fig. 2). The second model we will study is a field which

Fig. 2. Conformal diagram of Minkowski spacetime. The Milne coordinates (t, r) cover the

region inside the lightcone emanating from the origin O. The Rindler coordinates ( j R , x R)

cover the outside of this lightcone. The thicker solid line in the central diamond corresponds

to the position of the bubble wall.
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interacts with the tunneling field only on the bubble wall. For the tunneling

field, we will assume the thin-bubble-wall approximation. More general

models of the form (3) will be considered elsewhere.
The quantization will be performed in the ª Rindler wedgesº of these

spaces, because the hypersurfaces x R 5 const are Cauchy surfaces for the

whole spacetime.

4.1. VIS Model

Here we consider a massless field living in a spacetime constructed by

gluing two Minkowski spaces at some j R 5 R 0 (Fig. 3). We take Rindler

coordinates in the region outside the origin of the two pieces, using a Rindler

patch for each one. On each side, the Rindler coordinate (l/r) j R , where the

Fig. 3. Conformal diagram of the VIS spacetime. This spacetime, which corresponds to the

global gravitational field of a reflection-sym metric domain wall, is constructed by identifying

two Minkowski spacetimes at some j R 5 R 0.
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index l or r refers to the left or right pieces, ranges from (l/r) j R 5 0 on the

lightcone to some value (l/r) j R 5 R 0, where the two Minkowski pieces are

identified. Defining (l) j R 5 R 0e
h and (r) j R 5 R 0e

2 h , we can coordinatize both
pieces letting h range from 2 ` to ` . Then the line element outside the

lightcone becomes

ds2 5 a( h )2 (d h 2 2 d x 2
R 1 cosh2 h )R d V 2) (12)

where a( h ) 5 R 0e
h u ( 2 h ) 1 R 0e

2 h u ( h ), and u (x) is the Heaviside step
function.

In order to construct a quantum state, we expand the field operator F Ãin

terms of a sum over a complete set of mode functions times the corresponding

creation and annihilation operators,

F Ã 5 o
plm

aplm F plm 1 h.c. (13)

The mode functions F plm satisfy the field equation

N F plm 5 0 (14)

where N stands here for the four-dimensional d’ Alembertian operator in the

VIS spacetime. Taking the ansatz

F plm 5
Fp( h )

a( h )
=plm(xÄ ) (15)

where xÄ 5 ( x R , V ), V 5 ( u , w ), we find that Eq. (14) decouples into

dSN=plm 5 ( p2 1 1)=plm (16)

F 2
d 2

d h 2 2 2 d ( h ) G Fp 5 p2Fp (17)

Here dSN stands for the covariant d’ Alembertian on a (2 1 1) de Sitter space.

Equations (16)±(17) have the interpretation that =plm are massive fields living

in a (2 1 1) de Sitter space, with the mass spectrum given by the eigenvalues
of the SchroÈ dinger equation for Fp. Solving (17), we find that the spectrum

has a continuous twofold degenerate part for p2 . 0 and a bound state with

p2 5 2 1 (a zero mode). If we let p take positive and negative values, the

normalized mode functions Fp for p2 . 0, which are the usual scattering

waves, can be written as

Fp 5
1

! 2 p
{ [eip h 1 r ( p)e 2 ip h ] u ( 2 sgn( p) h )

1 s ( p)eip h u (sgn( p) h )} (18)
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where

r ( p) 5 2
1

i ) p ) 1 1
(19)

s ( p) 5
i ) p )

i ) p ) 1 1
(2 0)

The normalized supercurvature mode p2 5 2 1 is given by

F 2 1 5
a( h )

R 0

(21)

where the comma indicates that 2 1 refers to p2 instead of p. As we are
interested in an SO(3,1)-invariant state, the natural choices for =plm are the

positive frequency (2 1 1) Bunch±Davies modes [19 ],

=plm(xÄ ) 5 ! G (l 1 1 1 ip) G (l 1 1 2 ip)

2

3
P 2 l 2 1/2

ip 2 1/2 (i sinh x R)

! i cosh x R

Ylm( V ) (22)

where Ylm( V ) are the usual spherical harmonics. With this choice, it is straight-

forward to show that the quantum state for F Ãis SO(3,1)-invariant.

Now we proceed to compute the two-point Wightman function G( 1 )

(x, x8),

G( 1 ) (x, x8) [ ^ 0) F Ã(x) F Ã(x8) ) 0& 5 o
lm

F 2 1, lm (x) F 2 1, lm(x8)

1 #
`

2 `

dp o
lm

F plm (x) F plm(x8) (23)

From now on we will suppose that the two points x and x8 belong to the
Rindler wedge of the ª left Minkowskiº space, so we will omit the (l) index

for notational simplicity. Direct substitution of the mode functions gives

G( 1 ) (x, x8) 5
1

R2
0
o
lm

= 2 1, lm(xÄ ) = 2 1, lm(xÄ 8)

1
1

2 p R2
0 #

`

2 `

dp 1 j ip 2 1
M ( j 8M) 2 ip 2 1

1
1

ip 2 1
j ip 2 1

M ( j 8M)ip 2 1 2 o
lm

=plm (xÄ ) =plm(xÄ 8) (24)
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where we have defined j M 5 e h 5 j R /R 0. The two-point function G( 1 ) is

SO(3,1)-invariant because is a sum of SO(3,1)-invariant terms. Due to our

choice of positive-frequency modes, the lm sums correspond to the two-point
Wightman functions in the Euclidean vacuum for massive and a massless

scalar fields living in (2 1 1) de Sitter spacetime. The (3 1 1)-dimensional

Lorentz group SO(3,1) is the same as the group of (2 1 1)-dimensional de

Sitter transformations, so the two-point functions are Lorentz invariant by

construction 3 (its explicit form is given below). G( 1 ) also depends on the

quantity j R. This is a function of the interval in Minkowski space time, so

it is Lorentz-invariant, too.

First we will compute the contribution of the continuum. The lm sum

has been explicitly computed [24 ] (Figs. 4 and 5),

G( 1 )
p (xÄ , xÄ 8) [ o

lm
=plm =plm

5
G (1 1 ip) G (1 2 ip)

(4 p )3/2 G (3/2)
2F1 1 1 1 ip, 1 2 ip;

3

2
;

1 1 Z 2 i e

2 2 (25)

where

Z(xÄ , xÄ 8) [ X m (xÄ )X m (xÄ 8) 5 2 sinh x R sinh x 8R 1 cosh x R cosh x 8R cos
Ù

V V 8

which is explicitly Lorentz-invariant. Here X m (xÄ ) is the position of the point

xÄ in the (3 1 1) Minkowski space where the (2 1 1) de Sitter space is

embedded as a timelike hyperboloid. The function e (xÄ , xÄ 8) has been introduced

to indicate at which side of the cut the hypergeometric function should be

computed.4 It evaluates to « if xÄ and xÄ 8 are timelike-related and x R . x 8R, to
2 « if xÄ and xÄ 8 are timelike-related and x R . x 8R, and vanishes if xÄ and xÄ 8 are

spacelike-related, where « is a small, positive constant (see Fig. 4). At the

end of the calculation, we will take the limit « ® 0. Introducing cos z Ä [
2 ZÄ [ 2 Z 1 i e , we can write the two-point function G( 1 )

p (xÄ , xÄ 8) compactly as

G( 1 )
p (xÄ , xÄ 8) 5

1

4 p sin z Ä
sinh p z Ä
sinh p p

(26)

After performing the p integration, we obtain

3 We will follow refs. 20±23 to construct an SO(3,1)-invariant state for the supercurvature
massless mode with p2 5 2 1.

4 The hypergeometric function in (25) has a branch cut along the real axis in the complex Z
plane from Z 5 1 to Z 5 ` .
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Fig. 4. Conformal diagram of a (2 1 1) de Sitter hyperboloid j R 5 const. Without loss of

generality, we can take the point xÄ to lie in the ª originº O. Then Z . 1 if xÄ 8 is timelike-related

with the origin, and 2 1 , Z , 1 if xÄ 8 is spacelike-related with the origin and can be joined

with it by means of a geodesic. If Z , 2 1, xÄ 8 is spacelike-related with the origin, but there

are no geodesics connecting it with the origin. The function e (x, x8) is introduced in order to

take into account the time ordering of those points which are timelike-related. If this is the

case, it evaluates to CE if x R . x 8R and to 2 « if x R , x 8R, where « is a small, positive value.

Two possible paths for x 8R which pass through the origin are drawn (see discussion in Fig. 5).

G( 1 )
cont (x, x8) 5

1

8 p 2 s
1

1

8 p R2
0 1 2 cot z Ä 1 z Ä 2 arc tan

sin z Ä

cos z Ä 1 j M j 8M 2
1 log

( j M j 8M)2

sin z Ä 2 1 (cos z Ä 1 j M j 8M)2 2 (27)

The ª supercurvatureº contribution of the p2 5 2 1 mode is in fact

divergent. This is related to the zero-mode problem of massless quantum

fields in spacetimes with compact Cauchy surfaces. Following the usual

prescription [20±23 ], we formally write this divergent term as
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Fig. 5. Paths in the complex ZÄ and z Ä planes for the curves shown in Fig. 4, where we hold

the point xÄ fixed at O while moving xÄ 8 around the (2 1 1) de Sitter space. If Z , 2 1, then z Ä
is purely imaginary. If 2 1 , Z , 1, z Ä is essentially real (if it were not for the small i e imaginary

part). In this case, if x R , x 8R, 2 p , z Ä , 0, but if x R . x 8R, then 0 , z Ä , p . The coincidence

limit corresponds to both z Ä 5 6 p , depending on whether we approach xÄ from ª aboveº or

ª below.º When xÄ and xÄ 8 are timelike-related, z Ä has both imaginary and real parts. Its real part

is 6 p depending on whether x R is greater or less than x 8R, respectively.

G( 1 )
sup (x, x8) 5

1

4 p 2 ^ 0) Q2 ) 0& 1 o
l . 0,m

1

R2
0

= 2 1, lm = 2 1, lm (28)

where the infinity has been hidden in an infinity constant (see ref. 23 for

details). Later, when taking derivatives to compute the energy-momentum

tensor, this divergent term will give a zero contribution. The sum can be

performed, and the result is

G( 1 )
sup (x, x8) 5

1

4 p 2 ^ 0) Q2 ) 0& 1
1

8 p 2R2
0

( 2 2 z Ä cot z Ä

1 (2 x 1 i p ) tanh x R 1 (2 x 8 2 i p ) tanh x 8R) (29)

where we have dropped an irrelevant constant.
Adding the continuum and supercurvature contributions, and symmetriz-

ing the result with respect to x and x8, we finally find the symmetric Hadamard

two-point function (for pairs of points x, x8 in the ª leftº Minkowski),

G(1) (x, x8) 5
1

4 p 2 s
1

1

4 p 2 R2
0 1 2 x R tanh x R 1 2 x 8R tanh x 8R

2 2 cot z Ä arctan
sin z Ä

cos z Ä 1 j M j 8M

1 log
( j M j 8M)2

sin2 z Ä 1 (cos z Ä 1 j M j 8M)2 2 1
1

2 p 2 ^ 0) Q2 ) 0&
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5
1

4 p 2 s
1 W(x, x8) (3 0)

where

s 5
1

2
( j 2

R 1 j 82
R 1 2 j R j 8R cos z Ä ) (31)

is one half of the square geodesic distance in flat spacetime. The first term

in the final expression for G(1)(x, x8) is the usual Minkowski ultraviolet
divergence. The second term, W(x, x8), is due to the nontrivial geometric

boundary conditions imposed by the symmetry of our problem. If W(x, x8)
were not singular, the state would be of the Hadamard for [10±12 ]. But W(x,

x8) has local and nonlocal singularities. In the coincidence limit, it is divergent

on the bubble wall. It is logarithmically singular whenever one of the points

is on the lightcone emanating from the origin. It is also singular when x and
x8 satisfy the relation sin2 z Ä 1 (cos z Ä 1 j M j 8M)2 5 0, so the argument of the

logarithm diverges. The roots of this equation are at

j s
M j 8s

M 5 2 exp( 6 i z Ä s) (32)

To clarify the position of the singularities, let us fix the point xs and look

for the points x8s which make G( 1 )(xs, x8s) singular. Taking into account that

j s
M and j 8s

M should be real and should satisfy 0 , j s
M, j 8s

M , 1, it is seen from

(32) that the allowed values of z Ä s are of the form 1 p 1 iy [i.e., xÄ s and xÄ 8s
are ª timelikeº -separated on a (2 1 1) de Sitter hyperboloid; see Fig. 5], with

y . 2 log j s
M . 0. Without loss of generality, we can assume that xÄ s 5 ( 0,

0, 0). Then cos z Ä s 5 2 cosh y 5 2 cosh x 8s
R cos u 8s . This implies that 0 #

u 8s # p /2, and we have no restriction on w 8s . Since cosh x 8s
R 5 cosh y/cos

u 8s $ cosh y, we find that x 8s
R $ y $ 2 log j s

M or x 8s
R # 2 y # log j s

M. So the
region inside of which (for any value of V 8) G( 1 )(x, x8) is nonsingular (apart

from the singular points on the lightcone from x) is limited by the curves

j 8n.s.
M 5

1

ey j s.
M

(33)

x 8n.s.
R 5 6 y (34)

with y . 2 log j s
M, the lightcone from the origin and the bubble wall [the

superscript n.s. stands for ª nearest (nonlocal) singularityº ; see Fig. 6]. Note
that as x approaches the bubble wall (i.e., j M ® 1), the distance to the nearest

singular point x8 is reduced. Consistently, in the limiting case when x is on

the wall, W(x, x8) is singular on the coincidence limit.

Let us now check the causal relationship between singular points satis-

fying Eq. (32). If we compute s (xs, x8s), we find
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Fig. 6. Nonlocal singularities in the upper half ª left Minkowskiº in the VIS model. Inside the

shaded region the two-point function G(1)(x, x8), considered as a function of x8 with x fixed,

is singular only on the lightcone from x.

s (xs, x8s ) 5
e 2 2y

2( j s
M)2 [1 2 ( j s

M)2 ] [1 2 ( j s
M)2 e2y ] # 0 (35)

where the last inequality follows from y $ 2 log j s
M, 0 # j s

M # 1. The equal-

ity can only be realized if xs is on the bubble wall. Then, in this case, there
exist nonlocal singularities [of W(x, x8) ] which are null-related. But if xs is

not on the bubble wall, its singular partners are always timelike-related with it.

Summarizing, the two-point function is locally Hadamard everywhere

except on the bubble wall and on the lightcone. Moreover, it has (harmless,

see discussion below) nonlocal singularities.

4.2. ST Model

In this second model, which has been considered by Sasaki et al. [5 ],

the F Ãfield interacts with the tunneling field s only on the bubble wall. We

assume the infinitely thin-wall approximation, so the interaction term can be

written as
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m2( h ) 5 2
V 0

R2
0

d ( h ) (36)

where V 0 . 0 characterizes the strength of the interaction and R 0 is the radius

of the bubble wall.

Decomposing the field F Ãas before, we find that the SchroÈ dinger equation

for Fp takes the form

2 F 9p 1 2V 0d ( h )Fp 5 p2 Fp (37)

Now the spectrum is purely continuous with p2 . 0. The solution of this

SchroÈ dinger equation is the scattering basis (18) with the transmission and

reflection coefficients given by

r ( p) 5
V 0

i ) p ) 2 V0

(38)

s ( p) 5
i ) p )

i ) p ) 2 V 0

(39)

Following a similar path, we arrive at the following Hadamard two-

point function (for points x, x8 in the Rindler wedge and inside the bubble):

G(1)(x, x8) 5
1

4 p 2 s
1

1

4 p 2i

1

j R j 8Rsin z Ä F 2F1 1 1, V 0; V 0 1 1; 2 ei z Å j R j 8R

R2
0 2

2 2F1 1 1, V 0; V0 1 1; 2 e 2 i z Å j R j 8R

R2
0 2 G 5

1

4 p 2 s
1 W(x, x8) (4 0)

which is explicitly SO(3,1)-invariant. If we take the coincidence limit, the

function W(x, x8) has divergences on the bubble wall, so the state is not

locally Hadamard. Apart from this, it has nonlocal logarithmic singularities

at the points where the argument of the hypergemometric functions become
1, i.e., whenever j M j 8M 5 2 exp( 6 i z Ä ). This is the same relation we found

in the VIS model. Borrowing the conclusions from the VIS model, the state

is locally Hadamard everywhere except on the bubble wall, and has (harmless)

timelike nonlocal singularities (except also on the bubble wall).

As we have seen, the two models we have considered share two singular

behaviors: the existence of nonlocal singularities and the singularity of W
(x, x8) in the coincidence limit on the bubble wall. These singularities seem

to be related to the oversimplification of the model. Presumably, if instead

of a d -1ike term interaction we had introduced a smooth function, these

divergences would disappear.
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5. RENORMALIZED EXPECTATION VALUE OF THE STRESS
TENSOR

As we have pointed out, for the two models we have studied, the

singularities of G(1) (x, x8) are nearly of the Hadamard type. We can use

the point-splitting regularization prescription to compute the renormalized

expectation value of the stress-energy-momentum tensor [14±16 ],

^ Tab & 5
1

2
lim
x ® x8

$ab8 [W(x, x8) ] (41)

$ab8 5 ¹ a ¹ b8 2
1

2
gab8g

cd8 ¹ c ¹ d8 (42)

Noticing that cos z Ä 5 2 Z 1 i e 5 2 cos ! 2 ? dS s 1 i e , where dS s is one half

of the square distance in a unit (2 1 1) de Sitter spacetime, the covariant

derivatives in the ª de Sitterº direction are easily computed from [14, 12 ]

[dS s ;A ] 5 0 (43)

[dS s ;AB8 ] 5 2
gAB

j 2
R

(44)

where the brackets stand for the coincidence limit.

5.1. VIS Model

The renormalized expectation value of the stress tensor turns out to be

^ T j R j R & 5
j 2

R 2 2R2
0

4 p 2 R2
0 (R2

0 2 j 2
R)2 (45)

^ TAB & 5 2
j 4

R 2 3R2
0j 2

R 1 6R4
0

12 p 2 R2
0 (R2

02 j 2
R)3 gAB (46)

It is clear from the expression that the energy-momentum tensor behaves

somewhat better than the two-point function. It is divergent on the bubble wall,
but behaves smoothly on the lightcone. So it can be analytically continued to

the inside of the lightcone. For large t we find that the equation of state it

satisfies is of the form

p 5 2
1

3
r (47)
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with

r 5
1

4 p 2

1

R2
0t

2 (48)

5.2. ST Model

For the ST model, we find

^ T j R j R & 5
1

2 p 2R4
0

V 0

V 0 1 2
2F1 1 3, V 0 1 2; V0 1 3; 1 j R

R 0 2
2

2 (49)

^ TAB & 5
1

2 p 2R4
0

V 0

V 0 1 2 1 2F1 1 3, V 0 1 2; V0 1 3; 1 j R

R 0 2
2

2
1 2 1 j R

R 0 2
2

V 0 1 2

V 0 1 3
2F1 1 4, V 0 1 3; V 0 1 4; 1 j R

R 0 2
2

2 2 gAB (5 0)

where 0 # j R # R 0 (i.e., x is in the Rindler wedge and inside the bubble).

As before, the energy-momentum tensor turns out to be singular only on the

bubble wall.5 Continuing analytically the results to the inside of the lightcone,

we find that for large t the equation of state turns out to be

p 5 r (51)

with

r 5 2
4R2

0

t6
(52)

6. DISCUSSION

In this paper we have performed the computation of ^ Tab & in a quantum
state which fulfills our basic requirement of SO(3,1) invariance. In fact, we

have just outlined the simplest method to find an SO(3,1)-invariant state.

The question is whether by choosing a different set of modes we can also

obtain an inequivalent SO(3,1)-invariant state, but also of the Hadamard form.

A theorem due to Kay and Wald [13 ] is illuminating in this respect. The

theorem states that in a spacetime with a bifurcated Killing horizon there
can exist at most one regular quasifree state invariant under the isometry

5 The quantum state found in ref. 5 has the problem of being ill defined on the light-cone. This
singularity propagates to the renormalized energy-momentu m tensor, causing it to blow up
on the light cone. This seems to be due to an inappropiate normalization of the mode functions.
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which generates the bifurcated Killing horizon. Let us briefly analyze the

conditions under which the theorem holds.

In (3 1 1) spacetimes, we get a bifurcated Killing horizon whenever a
one-parameter group of isometries leaves invariant a 2-dimensional spacelike

manifold S . The bifurcated Killing horizon is generated by the null geodesics

orthogonal to S [13 ]. For example, Minkowski spacetime has bifurcated

Killing horizons. The isometry group is a one-parameter subgroup of Lorentz

boosts, and the manifold S is a two-plane. Any SO(3,1)-invariant spacetime,

where the line element can be written in the form

ds2 5 d j 2
R 1 a( j R)2( 2 d x 2

R 1 cosh2 x R d V ) (53)

has an SO(3,1)-invariant bifurcated Killing horizon. Noticing that the j R 5
const hypersurfaces are (2 1 1) de Sitter spaces which can be thought of as

embedded in a (3 1 1) Minkowski space, any boost generator on these

hypersurfaces is the infinitesimal generator of a isometry which (1) leaves

invariant a spacelike 2-manifold (so we get a bifurcated Killing horizon) and
(2) leaves an SO(3,1)-symmetric state invariant. We can take, for example,

the boost generator in the ZT plane of the embedding Minkowski space.

Expressed in the Rindler coordinates, it becomes

j a 5 2 cos u
-

- x R

1 tanh x R sin u
-
- u

(54)

The Killing field j a leaves invariant the spacelike 2-manifold u 5 p /2 and

x R 5 0. All bubble spacetimes with or without the inclusion of gravity do

possess this bifurcated Killing horizon.
In the algebraic approach to quantum field theory, a state v is defined

as a positive linear functional over the algebra of products of smeared quantum

fields, F Ã(F1) ? ? ? F Ã(Fn). A state will be specified once we know its smeared

n-point functions, v [F Ã(F1) ? ? ? F Ã(Fn) ]. A (pure) quasifree ground state is

the mathematically rigorous version of what is usually called a ª frequency

splittingº Fock vacuum state. A quasifree state has the special property of
being completely characterized by its two-point function. Heuristically, the

connection between the ª usualº approach and the algebraic framework is

then given by

G( 1 ) (x, x8) 5 ª v [F Ã(x) F Ã(x8) ]º (55)

A regular6 quasifree ground state is a quasifree ground state whose two-point
symmetric function is globally Hadamard and which has no zero modes. The

VIS model has a zero mode (as any massless field in spacetimes with compact

6 We include the notion of globally Hadamard in the definition of a regular state.
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Cauchy surfaces has [13 ]), so the theorem cannot be directly applied. Also,

strictly speaking, the quantum state we have found for the ST model does

not fulfill the requirements of the theorem because it is not globally Hadamard.
Roughly speaking, a two-point function is said to be globally Hadamard if

it is locally Hadamard and in addition has nonlocal singularities only at points

x, x8 which are null-related within a causal normal neighborhood of a Cauchy

hypersurface. 7 As we have seen, if we ignore the problems on the bubble

wall, the Hadamard function G(1)(x, x8) we have found for the ST model has

nonlocal singularities, but they are timelike-related. So, if it were not for the
singularities on the bubble wall, the state would be globally Hadamard and

without zero modes. As stated before, we think that the singularities on the

bubble wall would disappear if the potential were modeled by a smooth

function instead of by a d -like term, making the state globally Hadamard.

Then, symmetry would suffice to determine the (physically admissible) quan-

tum state for this model. Generic models which would not present these
pathologies are currently under investigation.
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